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Error Correction

Scheme:

Example of Additive White Gaussian Channel:

P(xout |xin) =
∏

i=bits

p(xout;i |xin;i )

p(x|y) ∼ exp(−s2(x − y)2
/2)

Channel
is noisy ”black box” with only statistical information available

Encoding:
use redundancy to redistribute damaging effect of the noise

Decoding [Algorithm]:
reconstruct most probable codeword by noisy (polluted) channel
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Low Density Parity Check Codes

N bits, M checks, L = N − M information bits
example: N = 10,M = 5, L = 5

2L codewords of 2N possible patterns

Parity check: Ĥv = c = 0
example:

Ĥ =


1 1 1 1 0 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 1 0 1 0 1 0 1 1 1
1 0 1 0 1 0 0 1 1 1
1 1 0 0 1 0 1 0 1 1


LDPC = graph (parity check matrix) is sparse

Almost a tree! [Sparse Graph/Code]
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Decoding as Inference

Statistical Inference

σorig ⇒ x ⇒ σ

original

data
σorig ∈ C
codeword

noisy channel

P(x|σ)

corrupted

data:

log-likelihood

magnetic field

statistical

inference

possible

preimage

σ ∈ C

Maximum Likelihood
Marginal Probability

arg max
σ
P(σ|x) arg max

σi

∑
σ\σi

P(x|σ)

Exhaustive search is generally expensive:
complexity of the algorithm ∼ 2N
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Statistical Inference
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original

data
σorig ∈ C
codeword

noisy channel

P(x|σ)

corrupted

data:

log-likelihood

magnetic field

statistical

inference

possible

preimage

σ ∈ C

σ = (σ1, · · · , σN), N finite, σi = ±1 (example)

Maximum Likelihood
Marginal Probability

arg max
σ
P(σ|x) arg max

σi

∑
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P(x|σ)

Exhaustive search is generally expensive:
complexity of the algorithm ∼ 2N
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Shannon Transition

Existence of an efficient
MESSAGE PASSING

[belief propagation] decoding
makes LDPC codes special!

Phase Transition

Ensemble of Codes [analysis &
design]

Thermodynamic limit but ...

Michael Chertkov – chertkov@lanl.gov http://cnls.lnl.gov/∼chertkov/Talks/IT/ColBP.pdf



Three Problems
One Method

Results

Error Correction
Particle Tracking
Power Grid

Error-Floor

Signal-to-Noise Ratio

E
rr

or
 R

at
e

Ensembles of LDPC codes

Error floor

Waterfall

Optimized II

Optimized I

Random

Old/bad
codes

T. Richardson ’03 (EF)

Density evolution does
not apply (to EF)

BER vs SNR = measure of
performance

Finite size effects

Waterfall ↔ Error-floor

Error-floor typically emerges due
to sub-optimality of decoding,
i.e. due to unaccounted loops

Monte-Carlo is useless at
FER . 10−8
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Error-floor Challenges

Signal-to-Noise Ratio

E
rr

or
 R

at
e

Ensembles of LDPC codes

Error floor

Waterfall

Optimized II

Optimized I

Random

Old/bad
codes

Understanding the Error Floor
(Inflection point, Asymptotics),
Need an efficient method to
analyze error-floor

Improving Decoding

Constructing New Codes
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Dance in Turbulence [movie]

Learn the flow from tracking particles
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Learning via Statistical Inference

Two images

Particle Image Velocimetry &
Lagrangian Particle Tracking
[standard solution]

Take snapshots often = Avoid
trajectory overlap

Consequence = A lot of data

Gigabit/s to monitor a
two-dimensional slice of a 10cm3

experimental cell with a pixel size of
0.1mm and exposition time of 1ms

Still need to “learn” velocity
(diffusion) from matching

New twist [MC, L.Kroc, F. Krzakala, L. Zdeborova, M. Vergassola ’09]

Take fewer snapshots = Let particles overlap

Put extra efforts into Learning/Inference

Use our (turbulence community) knowledge of Lagrangian evolution

Focus on learning (rather than matching)
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j=1,…,N
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Lagrangian Dynamics under the Viscous Scale

Plausible (for PIV) Modeling Assumptions

Particles are normally seed with mean separation few times smaller
than the viscous scale.

The Lagrangian velocity at these scales is spatially smooth.

Moreover the velocity gradient, ŝ, at these scales and times is frozen
(time independent).

Batchelor (diffusion + smooth advection) Model

Trajectory of i ’s particles obeys: dri (t)/dt = ŝri (t) + ξi (t)

tr(ŝ) = 0 - incompressible flow

〈ξαi (t1)ξβj (t2)〉 = κδijδ
αβδ(t1 − t2)
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Inference & Learning

Main Task: Learning parameters of the flow and of the medium

Given positions of N identical particles at t = 0 and t = 1:
∀i , j = 1, · · · ,N, xi = ri (0) and yj = rj(1)

To output MOST PROBABLE values of the flow, ŝ, and the
medium, κ, characterizing the inter-snapshot span: θ = (ŝ;κ).
[Matchings are hidden variables.]

Sub-task: Inference [reconstruction] of Matchings

Given parameters of the medium and the flow, θ

To reconstruct Most Probable matching between identical particles
in the two snapshots [“ground state”]

Even more generally - Probabilistic Reconstruction: to assign
probability to each matchings and evaluate marginal probabilities
[“magnetizations”]
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The greatest 
Engineering

Achievement of
the 20th century

will require 
smart revolution 

in the 21st century 

US power
grid
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Optimization & Control of Power Grid [L. Zdeborova, A. Decelle, MC ’09]

0R

1R

2R

3R

M

A: R = 0; 1; 2; 3. Graph samples.

Ancillary connections to foreign

generators/consumers are shown in

color.

1R

B: R = 1. Three valid (SAT)

configurations (shown in black, the rest

is in gray) for a sample graph shown in

Fig. A.

Can the anchillary lines (redundancy) help?

Design and efficient switching algorithm for finding SAT
solution.
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Boolean Graphical Models = The Language

Forney style - variables on the edges

P(~σ) = Z−1
∏
a

fa(~σa)

Z =
∑
σ

∏
a

fa(~σa)︸ ︷︷ ︸
partition function

fa ≥ 0

σab = σba = ±1

~σ1 = (σ12, σ14, σ18)

~σ2 = (σ12, σ23)

Objects of Interest

Most Probable Configuration = Maximum Likelihood =
Ground State: arg maxP(~σ)

Marginal Probability: e.g. P(σab) ≡
∑

~σ\σab
P(~σ)

Partition Function: Z
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Complexity & Algorithms

How many operations are required to evaluate a graphical model of
size N?

What is the exact algorithm with the least number of operations?

If one is ready to trade optimality for efficiency, what is the best (or
just good) approximate algorithm he/she can find for a given
(small) number of operations?

Given an approximate algorithm, how to decide if the algorithm is
good or bad? What is the measure of success?

How one can systematically improve an approximate algorithm?

Linear (or Algebraic) in N is EASY, Exponential is DIFFICULT
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Easy & Difficult Boolean Problems

EASY

Any graphical problems on a tree (Bethe-Peierls, Dynamical
Programming, BP, TAP and other names)

Ground State of a Rand. Field Ferrom. Ising model on any graph

Partition function of a planar Ising model

Finding if 2-SAT is satisfiable

Decoding over Binary Erasure Channel = XOR-SAT

Some network flow problems (max-flow, min-cut, shortest path, etc)

Minimal Perfect Matching Problem

Some special cases of Integer Programming (TUM)

Typical graphical problem, with loops and factor functions of a
general position, is DIFFICULT
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BP is Exact on a Tree Bethe ’35, Peierls ’36

1 2

5

6

4 3

Z 51(σ51) = f1(σ51), Z 52(σ52) = f2(σ52),

Z 63(σ63) = f3(σ63), Z 64(σ64) = f4(σ64)

Z 65(σ56) =
∑
~σ5\σ56

f5(~σ5)Z51(σ51)Z52(σ52)

Z =
∑
~σ6

f6(~σ6)Z63(σ63)Z64(σ64)Z65(σ65)

Zba(σab) =
∑
~σa\σab

fa(~σa)Zac(σac)Zad(σad) ⇒ Zab(σab) = Aab exp(ηabσab)

Belief Propagation Equations∑
~σa

fa(~σa) exp(
∑
c∈a

ηacσac) (σab − tanh (ηab + ηba)) = 0

e.g. Thouless-Anderson-Palmer (1977) Eqs.
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Belief Propagation (BP) and Message Passing

Apply what is exact on a tree (the equation) to other problems on graphs with
loops [heuristics ... but a good one]

To solve the system of N equations is EASIER then to count (or to choose one
of) 2N states.

Bethe Free Energy formulation of BP [Yedidia, Freeman, Weiss ’01]

Minimize the Kubblack-Leibler functional

F{b({σ})} ≡
∑
{σ}

b({σ}) ln
b({σ})
L({σ})

Difficult/Exact

under the following “almost variational” substitution” for beliefs:

b({σ}) ≈
∏

i bi (σi )
∏

j bj (σj )∏
(i,j) bj

i (σ
j
i )

[tracking]
Easy/Approximate

Message Passing is a (graph) Distributed
Implementation of BP

Graphical Models = the language
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Beyond BP [MC, V. Chernyak ’06-’09 + J. Johnson ’09]

Only mentioning briefly today

Loop Calculus/Series:

Z =
∑
~σσ

∏
a

fa(~σa) = ZBP

(
1 +

∑
C

r(C )

)
,

each rC is expressed solely in terms of
BP marginals

BP is a Gauge. There are other interesting choices of the Gauges.

Loop Series for Gaussian Integrals, Fermions, etc.

Planar and Surface Graphical Models which are Easy [alas dimer].
Holographic Computations. Matchgates. Quantum Theory of
Computations.

Orbit product for Gaussian GM [J. Johnson’s SFI coll in three week]
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Error-floor Challenges

Signal-to-Noise Ratio

E
rr

or
 R

at
e

Ensembles of LDPC codes

Error floor

Waterfall

Optimized II

Optimized I

Random

Old/bad
codes Understanding the Error Floor

(Inflection point, Asymptotics),
Need an efficient method to
analyze error-floor

... i.e. an efficient method to
analyze rare-events [BP
failures] ⇒
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Optimal Fluctuation (Instanton) Approach
for Extracting Rare but Dominant Events
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Pseudo-codewords and Instantons

Error-floor is caused by Pseudo-codewords:

Wiberg ’96; Forney et.al’99; Frey et.al ’01;

Richardson ’03; Vontobel, Koetter ’04-’06

Instanton = optimal conf of the noise

BER =

∫
d(noise) WEIGHT (noise)

BER ∼WEIGHT

(
optimal conf
of the noise

)
optimal conf
of the noise

=
Point at the ES
closest to ”0”

Instantons are decoded to Pseudo-Codewords

Instanton-amoeba

= optimization algorithm
Stepanov, et.al ’04,’05

Stepanov, Chertkov ’06
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Efficeint Instanton Search Algorithm
[MC, M. Stepanov ’07; MC,MC, S. Chillapagari, B. Vasic ’08-’09]

BER ≈ maxnoise

decoding=BP,LP︷ ︸︸ ︷
minoutputWeight(noise;output)

∣∣∣∣∣∣∣
Error Surface

Developed Efficient Alg. for LP-Instanton
Search. The output is the spectra of the
dangerous pseudo-codewords

Started to design Better Decoding =
Improved LP/BP +

Started to design new codes
 0

 0.2

 0.4

 0.6
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 1

 10  15  20  25  30

di
st

ri
bu
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fu
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tio
n

d

dML
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BP, 8 iter
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Tracking Particles as a Graphical Model

L({σ}|θ) = C ({σ})
∏
(i,j)

[
P j

i

(
xi , y

j |θ
)]σj

i

C ({σ}) ≡
∏

j

δ

(∑
i

σj
i , 1

)∏
i

δ

∑
j

σj
i , 1



Surprising Exactness of BP for ML-assignement

Exact Polynomial Algorithms (auction, Hungarian) are available for the problem

Generally BP is exact only on a graph without loops [tree]

In this [Perfect Matching on Bipartite Graph] case it is still exact in spite of
many loops!! [Bayati, Shah, Sharma ’08], also Linear Programming/TUM
interpretation [MC ’08]
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Can you guess who went where?

N particles are placed uniformly at
random in a d-dimensional box of
size N1/d

Choose θ = (κ, s) in such a way

that after rescaling, ŝ∗ = ŝN1/d ,
κ∗ = κ, all the rescaled
parameters are O(1).

Produce a stochastic map for the
N particles from the original
image to respective positions in
the consecutive image.

N = 400 particles. 2D.

ŝ =

(
a b − c

b + c a

)
Actual values: κ = 1.05, a∗ = 0.28, b∗ = 0.54, c∗ = 0.24

Output of OUR LEARNING algorithm: [accounts for multiple matchings !!]
κBP = 1, aBP = 0.32, bBP = 0.55, cBP = 0.19 [within the “finite size” error]

Michael Chertkov – chertkov@lanl.gov http://cnls.lnl.gov/∼chertkov/Talks/IT/ColBP.pdf



Three Problems
One Method

Results

Error Correction
Particle Tracking
Power Grid

Combined Message Passing with Parameters’ Update

Fixed Point Equations for Messages

BP equations: h
i→j

= − 1
β

ln
∑

k 6=j Pk
i eβhk→i

; hj→i = − 1
β

ln
∑

k 6=i P
j
keβh

k→j

BP estimation for ZBP(θ) = Z(θ|h solves BP eqs. at β = 1)

MPA estimation for ZMPA(θ) = Z(θ|h solves BP eqs. at β =∞)

Z(θ|h; β) =
∑

(ij) ln

(
1 + P

j
i e
βhi→j +βhj→i

)
−
∑

i ln

(∑
j P

j
i e
βhj→i

)
−
∑

j ln

(∑
i P

j
i e
βhi→j

)

Learning: argminθZ(θ)

Solved using Newton’s method in combination with message-passing: after each
Newton step, we update the messages

Even though (theoretically) the convergence is not guaranteed, the scheme
always converges

Complexity [in our implementation] is O(N2), even though reduction to O(N) is
straightforward
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Quality of the Predicition [is good]

2D. a∗ = b∗ = c∗ = 1, κ∗ = 0.5. N = 200.
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The BP Bethe free
energy vs κ and b. Every
point is obtained by
minimizing wrt a, c

Perfect maximum at
b = 1 and κ = 0.5
achieved at
aBP = 1.148(1),
bBP = 1.026(1),
cBP = 0.945(1),
κBP = 0.509(1).
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We also have a “random distance” model [ala random matching of
Mezard, Parisi ’86-’01] providing a theory support for using BP in
the reconstruction/learning algorithms.

We are working on

Applying the algorithm to real particle tracking in turbulence
experiments

Extending the approach to learning multi-scale velocity field
and possibly from multiple consequential images

Going beyond BP [improving the quality of tracking]
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Message-Passing Switching Algorithm
for the grid model with ancillary lines
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To analyze the SAT-UNSAT transition We solved Cavity
Equations (averaged BP) with Population Dynamics
Algorithm

We developed WalkGrid (greedy search) algorithm which finds
SAT-switching efficiently
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We are working on

Application of the approach to more realistic grids

Extending the story beyond “the commodity flow” approach
towards accounting for AC/DC specifics of the power flows

Switching vs Contingency. Off-line games. Control
Algorithms.

... this research is a part of a new DR project at LANL on
“Optimization and Control Theory for Smart Grids”
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Bottom Line

Applications of Belief Propagation (and its distributed
iterative realization, Message Passing) are diverse and
abundant

BP/MP is also advantageous, thanks to existence of very
reach and powerful tree-like, sparse analysis techniques
[physics, CS, statistics]

BP/MP has great theory and application potential for
improvements [account for loops]

BP/MP can be combined with other techniques (e.g. Markov
Chain, planar inference, etc) and in this regards it represents
the tip of the iceberg called “Science of Algorithms”
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